Projective connections, group Vey cocycle and deformation quantization

نویسنده

  • Serge Tabachnikov
چکیده

0.1. In this paper we construct a number of geometrically meaningful 1– and 2– cocycles of infinite dimensional Lie groups and Lie algebras. The groups are groups of diffeomorphisms of smooth manifolds and their subgroups, such as the group of symplectomorphisms of a symplectic manifold; the Lie algebras are algebras of vector fields. Coefficient spaces of the cocycles are spaces of various tensor fields, naturally acted upon by diffeomorphisms and vector fields. Our constructions are closely related to deformation quantization. 0.2. Definition of cohomology. Recall the definition of Lie group and Lie algebra cohomology (see, e.g., [Fu]). For a group G and its left module A the space of cochains C(G, A) consists of continuous maps G× ...×G } {{ } q → A, and the differential d : C(G, A)→ C(G, A) is given by the formula:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fedosov ∗-products and quantum momentum maps

The purpose of the paper is to study various aspects of star products on a symplectic manifold related to the Fedosov method. By introducing the notion of “quantum exponential maps”, we give a criterion characterizing Fedosov connections. As a consequence, a geometric realization is obtained for the equivalence between an arbitrary ∗-product and a Fedosov one. Every Fedosov ∗-product is shown t...

متن کامل

Deformation of C-algebras by an Action of Abelian Groups with Dual 2-cocycle and Quantum Groups

We present a refinement of Rieffel Deformation of C*-algebras. We start from Rieffel data (A,Ψ, ρ) where A is a C∗-algebra, ρ is an action of abelian group Γ on A and Ψ is a 2-cocycle on a dual group. Using Landstad theory of crossed product we get a deformed C∗-algebra A. In case of Γ = R we obtain a very simple proof of invariance of K groups under the deformation. In any case we get a simple...

متن کامل

Non-commutative Markov Processes in Free Group Factors, Related to Berezin’s Quantization and Automorphic Forms

In this paper we use the description of free group factors as the von Neumann algebras of Berezin’s deformation of the upper half-plane, modulo PSL (2, Z). The derivative, in the deformation parameter, of the product in the corresponding algebras, is a positive Hochschild 2-cocycle, defined on a dense subalgebra. By analyzing the structure of the cocycle we prove that there is a generator L for...

متن کامل

/ 94 02 09 8 v 1 1 6 Fe b 19 94 QED in external fields from the spin representation

Systematic use of the infinite-dimensional spin representation simplifies and rigorizes several questions in Quantum Field Theory. This representation permutes “Gaussian” elements in the fermion Fock space, and is necessarily projective: we compute its cocycle at the group level, and obtain Schwinger terms and anomalies from infinitesimal versions of this cocycle. Quantization, in this framewor...

متن کامل

ACTA UNIVERSITATIS APULENSIS No 14/2007 NON-COMMUTATIVE MARKOV PROCESSES IN FREE GROUPS FACTORS, RELATED TO BEREZIN’S QUANTIZATION AND AUTOMORPHIC FORMS

In this paper we use the description of free group factors as the von Neumann algebras of Berezin’s deformation of the upperhalf plane, modulo PSL(2,Z). The derivative, in the deformation parameter, of the product in the corresponding algebras, is a positive — 2 Hochschild cocycle, defined on a dense subalgebra. By analyzing the structure of the cocycle we prove that there is a generator, L, fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996